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Abstract—Data driven programming models like 

MapReduce have gained the popularity in large-scale data 

processing. Although great efforts through the Hadoop 

implementation and framework decoupling (e.g. YARN, Mesos) 

have allowed Hadoop to scale to tens of thousands of 

commodity cluster processors, the centralized designs of the 

resource manager, task scheduler and metadata management 

of HDFS file system adversely affect Hadoop’s scalability to 

tomorrow’s extreme-scale data centers. This paper aims to 

address the YARN scaling issues through a distributed task 

execution framework, MATRIX, which was originally designed 

to schedule the executions of data-intensive scientific 

applications of many-task computing on supercomputers. We 

propose to leverage the distributed design wisdoms of 

MATRIX to schedule arbitrary data processing applications in 

cloud. We compare MATRIX with YARN in processing typical 

Hadoop workloads, such as WordCount, TeraSort, Grep and 

RandomWriter, and the Ligand application in Bioinformatics 

on the Amazon Cloud. Experimental results show that 

MATRIX outperforms YARN by 1.27X for the typical 

workloads, and by 2.04X for the real application. We also run 

and simulate MATRIX with fine-grained sub-second 

workloads. With the simulation results giving the efficiency of 

86.8% at 64K cores for the 150ms workload, we show that 

MATRIX has the potential to enable Hadoop to scale to 

extreme-scale data centers for fine-grained workloads. 

Keywords—data driven programming model; MapReduce; 

task execution framework; scheduling; extreme scales 

I. INTRODUCTION 

Applications in the Cloud domain (e.g. Yahoo! weather 
[1], Google Search Index [2], Amazon Online Streaming [3], 
and Facebook Photo Gallery [4]) are evolving to be data-
intensive that process large volumes of data for interactive 
tasks. This trend has led to the programming paradigm 
shifting from the compute-centric to the data driven. Data 
driven programming models [5], in the most cases, 
decompose applications to embarrassingly parallel tasks that 
are structured as Direct Acyclic Graph (DAG) [6]. In an 
application DAG, the vertices are the discrete tasks, and the 
edges represent the data flows from one task to another.  

MapReduce [7] is the representative of the data driven 
programming model that aims at processing large-scale data-
intensive applications in Cloud on commodity processors 
(either an enterprise cluster, or private/public Cloud [61]). In 
MapReduce, applications are divided into two phases (i.e. 
Map and Reduce) with an intermediate shuffling procedure, 

and the data is formatted as unstructured (key, value) pairs. 
The programming framework is comprised of three major 
components: the resource manager manages the global 
compute nodes, the task scheduler places a task (either a map 
task or a reduce task) on the most suitable compute node, and 
the file system stores the application data and metadata. 

The first generation Hadoop [8] (Hadoop_v1, circa 2005) 
was the open-source implementation of the MapReduce. In 
Hadoop_v1, the centralized job tracker plays the roles of 
both resource manager and task scheduler; the HDFS is the 
file system [9] to store the application data; and the 
centralized namenode is the file metadata server. In order to 
promote Hadoop to be not only the implementation of 
MapReduce, but one standard programming model for a 
generic Hadoop cluster, the Apache Hadoop community 
developed the next generation Hadoop, YARN [10] (circa 
2013), by decoupling the resource management 
infrastructure with the programming model. From this point, 
when we refer to Hadoop, we mean YARN. 

YARN utilizes a centralized resource manager (RM) to 
monitor and allocate resources. Each application delegates a 
centralized per-application master (AM) to schedule tasks to 
resource containers managed by the node manager (NM) on 
the computing nodes. The HDFS file system and centralized 
metadata management remain the same. Decoupling the 
resource management infrastructure with the programming 
model enables Hadoop to run many application frameworks 
(e.g. MapReduce, Iterative application, MPI, and scientific 
workflows) and eases the resource sharing of the Hadoop 
cluster. Besides, as the scheduler is separated from the RM 
with the implementation of the per-application AM, the 
Hadoop has achieved unprecedented scalability. Similarly, 
the Mesos [11] resource sharing platform is another example 
of the scalable Hadoop programming frameworks. 

However, there are inevitable design issues that prevent 
Hadoop from scaling to extreme scales, the scales that are 2 
to 3 orders of magnitude larger than that of today’s 
distributed systems; similarly, today’s scales do not support 
several orders of magnitude fine grained workloads (e.g. sub-
second tasks). The first category of issues come from the 
centralized paradigm. Firstly, the centralized RM of YARN 
is a bottleneck.  Although the RM is lightweight due to the 
framework separation, it would cap the number of 
applications supported concurrently as the RM has limited 
processing capacity. Secondly, the centralized per-
application AM may limit the task placement speed when the 
task parallelism grows enormously for the applications in 



certain domains. Thirdly, the centralized metadata 
management of HDFS is hampering the metadata query 
speed that will have side effects on the task placement 
throughput for data-locality aware scheduling. The other 
issue comes from the fixed division of Map and Reduce 
phases of the Hadoop jobs. This division is simple and works 
well for many applications, but not so much for more 
complex applications, such as iterative MapReduce [12] that 
supports different levels of task parallelism, and the  
irregular applications with random DAGs. Finally, the 
Hadoop framework is not well suited for running fine-
grained workloads with task durations of sub-seconds, such 
as the lower-latency interactive data processing applications 
[25]. The reason is twofold. One is that the Hadoop employs 
a pull-based mechanism. The free containers pull tasks from 
the scheduler; this causes at least one extra Ping-Pong 
overhead per-request in scheduling. The other one is that the 
HDFS suggests a relatively large block size (e.g. 64MB) 
when partitioning the data, in order to maintain efficient 
metadata management. This confines the workload’s 
granularity to be tens of seconds. Although the 
administrators of HDFS can easily tune the block size, it 
involves manual intervention. Furthermore, too small block 
sizes can easily saturate the metadata server. 

This work proposes to utilize an existing distributed task 
execution framework, MATRIX [34][44][48], to do scalable 
task placement for Hadoop workloads, with the goal of 
addressing the Hadoop scaling issues. MATRIX was 
originally developed to schedule the fine-grained data-
intensive many-task computing (MTC) [45] applications on 
supercomputers. MATRIX delegates a scheduler on each 
compute node to manage local resources and schedule tasks, 
and utilizes a data-aware work stealing technique to optimize 
task placement for the best load balancing and exploitation 
of data-locality. A distributed key-value store, namely ZHT 
[15][16][17][18], is applied to store task metadata in a 
scalable and fault tolerant way. We leverage the distributed 
design wisdoms of MATRIX in scheduling data processing 
applications in clouds. We compare MATRIX with YARN 
using typical Hadoop workloads, such as WordCount, 
TeraSort, RandomWriter, and Grep, as well as an application 
in Bioinformatics. We also run and simulate MATRIX with 
fine-grained sub-second workloads and MATRIX shows the 
potential to enable Hadoop to scale to extreme scales. The 

contributions of this paper are highlighted as follows: 

 Proposed to address scalability issues of Hadoop 
through decentralized scheduling with MATRIX  

 An inclusive comparison between MATRIX and 
YARN with both benchmarking and real application 
workloads, up to 256 cores on the AWS Cloud  

 An evaluation of the scalability of MATRIX for fine-
grained sub-second workloads through both real 
systems and simulations at extreme scales 

The rest of this paper is organized as follows. Section II 
presents the related work. Section III analyzes the Hadoop 
design issues, introduces MATRIX, and shows how 
MATRIX can address the Hadoop scaling issues. Section IV 
presents the evaluation results. Section V concludes the 
paper and lists the future work. 

II. RELATED WORK 

Ever since the emergence of the MapReduce and Cloud 
computing, the Apache community disclosed the Hadoop_v1 
[8] implementation. As the system scale is growing 
exponentially and the applications are experiencing data 
explosion, there are extensive research efforts that aimed at 
addressing the scalability issues, such as resource managers, 
task schedulers and metadata management, to keep Hadoop 
scalable with the same pace of the growth of distributed 
systems and data volumes in data processing applications. 

YARN [10] and Mesos [11] are two frameworks that 
decouple the resource management infrastructure from the 
task scheduler of the programming model to enable efficient 
resource sharing in general commodity Hadoop clusters for 
different data-intensive applications. Both of them apply a 
centralized RM to allocate resources to applications. The 
AM then will be in charge of scheduling tasks onto the 
allocated compute nodes. The difference between them is 
that Mesos employs an AM for one category of applications, 
while YARN is much finer grained in that it uses an AM per 
application, which, in theory, should be more scalable. 
Although they have improved the scalability and efficiency 
of the resource sharing in Hadoop clusters significantly with 
the separation, the centralized RM is still a barrier towards 
extreme scales or of the support for fine-grained workloads. 
Omega [43] is a distributed scheduling framework for 
Google’s data-intensive production workloads. Omega 
deploys multiple schedulers, and each one maintains a 
private resource state of the whole cluster to claim resources 
and make scheduling decisions through an atomic operation. 
The private states are synchronized with a master copy of the 
global state. This design eliminates the bottleneck of the 
centralized resource allocator. However, the global state 
synchronization introduces considerable overheads. In 
addition, Omega is not a system in the public domain that 
Hadoop can take advantage of. The Hadoop coupled with 
MATRIX is a step towards a practical system integration that 
can accelerate Hadoop’s scalability. 

Another research aims to improve the Hadoop schedulers. 
Most of work focuses on optimizing the scheduling policies 
to meet different requirements in a centralized task scheduler. 
The Hadoop default schedulers include the Capacity 
Scheduler (CS) [19], the Fair Scheduler (FS) [20] and the 
Hadoop On Demand (HOD) Scheduler (HS) [21]. Each of 
them has a different design goal: the CS aims at offering 
resource sharing to multiple tenants with the individual 
capacity and performance SLA; the FS divides resources 
fairly among job pools to ensure that the jobs get an equal 
share of resources over time; the HS relies on the Torque 
resource manager to allocate nodes, and allows users to 
easily setup Hadoop by provisioning tasks and HDFS 
instances on the nodes. Rasooli and Down proposed a hybrid 
scheduling approach [22] that can dynamically select the best 
scheduling algorithm (e.g. FIFO, FS, and COSHH [23]) for 
heterogeneous systems. To optimize fairness and locality, 
Zaharia et. al proposed a delay scheduling algorithm [24] 
that delays the scheduling of a job for a limited time until 
highly possible to schedule the job to where the data resides.  



These efforts have limited advancement to the scalability 
because they work within a single scheduler. Some early 
work towards distributed resource management was 
GRUBER [51], which focused on distributed brokering of 
Grid resources. Sparrow [25] is a distributed task scheduler 
that applies multiple schedulers with each one knowing all 
the nodes to schedule fine-grained sub-second tasks. Each 
scheduler probes multiple nodes and implements a pushing 
mechanism to place tasks on the least overloaded node with 
early binding. This is not scalable under heterogeneous 
workloads that have wide distribution of task length due to 
the fact that tasks cannot be moved after submission for load 
balancing’s purpose. Furthermore, Sparrow works in tandem 
with Spark [38], and hence vanilla Hadoop applications 
cannot be executed with Sparrow easily. 

Another related research direction is scalable metadata 
management. To optimize the metadata management and 
usage for small files, Machey et al. provided a mechanism 
that utilizes the Hadoop “harballing” compression method to 
reduce the metadata memory footprint [26]. Zhao et al. 
presented a metadata-aware storage architecture [27] that 
utilizes the classification algorithm of merge module and 
efficient indexing mechanism to merge multiple small files 
into Sequence File, aiming to solve the namenode memory 
bottleneck. However, neither work touched the base of 
addressing the scalability issues of the centralized namenode 
in processing the tremendously increased large amount of 
metadata access operations. Haceph [29] is a project that 
aims to replace the HDFS by the Ceph file system [30] 
integration with the Hadoop POSIX IO interfaces. Ceph uses 
a dynamic subtree partitioning technique to divide the name 
space onto multiple metadata servers. This work is more 
scalable, but may not function well under failures due to the 
difficulty of re-building a tree under failures. 

III. DISTRIBUTED DATA DRIVEN TASK PLACEMENT 

In this section, we first analyze the design issues that 
result in the scalability problems of Hadoop. We then 
introduce the MATRIX task execution framework, and 
propose to apply its distributed designs to address the issues. 

A. Hadoop Design Issues 

Although YARN has improved the Hadoop scalability 
significantly, there are fundamental design issues that are 
capping the scalability of Hadoop towards extreme scales. 

1) Centralized resource manager: The resource 
manager (RM) is a core component of the Hadoop 
framework. It offers the functionalities of managing, 
provisioning, and monitoring the resources (e.g. CPU, 
memory, network bandwidth) of the compute nodes of a 
Hadoop cluster. Although YARN decouples the RM from 
the task scheduler to enable Hadoop running different 
frameworks, the RM is still centralized. One may argue that 
the centralized design should be scalable as the processing 
ability of a single compute node is increasing exponentially. 
However, the achieved network bandwith from a single 
node to all the compute nodes is bounded. 

2) Application task scheduler: YARN delegates the 
scheduling of tasks of different applications to each 

individual application master (AM), which makes decisions 
to schedule tasks among the allocated resources (in the form 
of containers managed by the node manager on each 
compute node). Task scheduling component is distributed in 
the sense of scheduling different applications. However, 
from per-application’s perspective, the task scheduler in the 
AM still has a centralized design that has too limited 
scheduling ability to meet the evergrowing task amount and 
granularity. In addition, Hadoop employs a pull-based 
mechanism, in which, the free containers pull tasks from the 
scheduler. This causes at least one extra Ping-Pong 
overhead in scheduling. One may have doubt about the 
exsistance of an application which can be decomposed as so 
many tasks that needs a resource allocation of all the 
compute nodes. But, it is surely happening given the 
exponential growth of the application data sizes. 

3) Centralized metadata management: The HDFS is the 
default file system that stores all the data files in the 
datanodes through random distributions of data blocks, and 
keeps all the file/block metadata in a centralized namenode. 
The namenode monitors all the datanodes. As the data 
volumes of applications are growing in a fast rate, the 
number of data files are increasing significantly, leading to 
much higher demands of the memory footprint and metadata 
access rate that can easily overwelm the centralized 
metadata management. Things could be much worse for 
abundant small data files. In order to maintain an efficient 
metadata management in the centralized namenode, the 
HDFS suggests a relatively large block size (e.g. 64MB) 
when partitioning the data files. This is not well suited for 
the fine-grained lower latency workloads.  

4) Limited data flow pattern: The Hadoop jobs have the 
fixed two-layer data flow pattern. Each job is decomposed 
as embarasingly parallel map-phase tasks with each one 
processing a partition of the input data. The map tasks 
generate intermediate data which is then aggregated by the 
reduce-phase tasks. Although many applications follow this 
simple pattern, there are still quite a few applications that 
are decomposed with much more complex workload DAGs. 
One example is the category of irregular parallel 
applications that have unpredictable data flow patterns. 
These applications need dynamic scalable scheduling 
echniques, such as work stealing, to achive distributed load 
balancing. Another category of the applications with 
complex data flow patterns are the iterative applications that 
aim to find an optimal solution through the convergence 
after iterative computing steps. Though one can divide such 
an application as multiple steps of Hadoop jobs, Hadoop 
isn’t able to run these application steps seamlessly. 

B. MATRIX Task Execution Framework 

MATRIX is a distributed task execution framework 
designed to schedule MTC scientific applications on tightly-
coupled cluster and supercomputers. MATRIX achieved 87% 
efficiency at 200 cores in scheduling two data-intensive 
applications, Image stacking in Astronomy and All-pairs in 
Bioinformatics, with average task lengths of 100ms [31][53]. 

Figure 1 shows the MATRIX architecture. MATRIX is 
fully distributed by delegating one scheduler on each 



compute node. On the same compute node, there is an 
executor and a key-value store (KVS) server. The scheduler 
is responsible for managing local resource and placing tasks 
onto the most suitable compute node, for optimizing both 
load balancing and data-locality. The executor executes the 
tasks that have been scheduled in local with multiple (usually 
equals to the number of cores of a compute node) parallel 
executing threads. MATRIX utilizes the KVS, ZHT [52][15], 
to keep the metadata of tasks and data files in a scalable way. 
Each scheduler is initialized as a ZHT client that has a global 
knowledge of all the ZHT servers, and can query and update 
the task metadata transparently through the APIs (lookup, 
insert, remove) that hash the record key to direct the requests 
to correct server. ZHT scaled up to 32K cores with high 
throughput of 18M ops/sec and low latency of 1.5ms [15]. 

KVS server

Scheduler

Executor KVS server

Scheduler

Executor

Compute Node Compute Node

……
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Figure 1: MATRIX architecture 

The schedulers implemented a data-aware work stealing 
technique to optimize both load balancing and data locality. 
Each scheduler has four task queues, namely waiting queue 
(WaitQ), dedicated ready queue (LReadyQ), shared ready 
queue (SReadyQ), and complete queue (CompleteQ), which 
store tasks in different states. The WaitQ keeps tasks that 
wait for their parents to be done. The LReadyQ stores ready 
tasks whose majority of required data is local; these tasks are 
only executed locally. The ready tasks in the SReadyQ can 
be migrated to any node through the random work stealing 
technique (the idle schedulers steal tasks from the overloaded 
randomly chosen neighbors) for the purpose of load 
balancing, because the required data size of the tasks is so 
small that transferring it involves little overhead. The 
finished task is moved to the CompleteQ. The scheduler then 
updates the metadata of each child to notify the completion 
of this parent by querying ZHT. 

C. Leveraging MATRIX Distributed Design Wisdoms 

Although MATRIX was designed for scheduling fine-
grained MTC data-intensive applications on supercomputers 
[65][67], we show how to leverage the MATRIX distributed 
design wisdoms to overcome the Hadoop scaling limitations 
for arbitrary data processing applications. 

1) Distributed Resource Management: Instead of 
employing a single RM to manage all the resources as the 
Hadoop framework does, in MATRIX, each scheduler 
maintains a local view of the resources of an individual 
node. The per-node resource manager is demanded, because 
the physical computing and storage units are not only 
increasing in terms of sizes, but are becoming more 
complex, such as hetergeneous cores and various types of 

storages (e.g. NVRAM, spinning Hard Disk, and SSD). The 
demand is more urgent in a virtualized Cloud environment, 
in which, the RM also needs to conduct resource binding 
and monitoring, leading to more workloads.  

2) Distributed Task Scheduling: The schedulers are not 
only in charge of resource management, but responsible for 
making scheduling decisions through the data-aware work 
stealing technique. The distributed scheduling architecture is 
scalable than a centralized one, since all the schedulers 
participate in making scheduling decisions. In addition, 
MATRIX can tune the work stealing parameters (e.g. 
number of tasks to steal, number of neighbors, polling 
interval) at runtime to reduce the network communication 
overheads of distributed scheduling. The distributed 
architecture enables the system to achieve roughly the linear 
scalability as the system and workload scale up. 

3) Distriuted Metadata Management: We can leverage 
distributed KVS to offer a flat namespace in managing the 
task and file metadata. Comparing with other ways, such as 
sub-tree partitioning [32] and consistent hashing [33], flat 
namespace hashing has the ability to achieve both good load 
balancing, and faster metadata accessing rate with zero-hop 
routing. In sub-tree partitioning, the namespace is organized 
in sub trees rooted as individual directory, and the sub trees 
are managed by multiple metadata servers in a distributed 
way. As the directories may have wide distribution of 
number of files and file sizes, the partitioning may result in 
poor load balancing. In consistency hashing, each metadata 
server has partial knowledge of the others, leading to extra 
routing hops needed to find the right server that can satisfy a 
query. For example, MATRIX combines the task and file 
metadata as (key, value) pairs that represent the data 
dependencies and data file locations and sizes of all the 
tasks in a workload. For each task, the key is the “taskId”, 
and the value specifies the “parent” and “child” tasks, as 
well as the names, locations, and sizes of the required data 
files. One may argue that the full connectivity of the KVS 
will be an issue at extreme scales. However, our pervious 
simulation results [13][14] showed that in a fully connected 
architecture, the number of communication messages 
required to maintain a reliable service is trivial when 
comparing with the number of request-processing messages. 

4) Fault Tolerance: Fault tolerance is an important 
design concerns, especially for extreme-scale distributed 
systems that have high failure rates. MATRIX can tolerate 
failures with a minimum effort due to the distributed nature, 
the stateless feature of the schedulers, and the integration of 
ZHT. Failures of a node only affect the tasks, data files, and 
metadata on that node, and can be resolved easily as 
follows. The affected tasks can be acknowledged and 
resumitted to other schedulers; A part of the data files were 
copied and cached in other nodes when they were 
transmitted for executing tasks. In the future, we will rely on 
the underneath file system to handle the affected files; As 
ZHT stores the metadata, and ZHT has implemented 
failure/recovery, replication and consistency mechanisms, 
MATRIX needs to worry little about the affected metadata. 

5) Elastic Property: MATRIX allows the resources to 
be dynamically expanded and shrinked in the elastic Cloud 



environment. The resource shrinking is regarded as resource 
failure in terms of consequences, and can be resolved 
through the same techniques of handing failures. When 
adding an extra compute node, a new scheduler and ZHT 
server will also be introduced. ZHT has already 
implemented a dynamic membership mechanism to 
undertake the newly added server. This mechanism can also 
be used in MATRIX to notify all the existing schedulers 
about the extra added scheduler. 

6) Support of arbitrary application DAG: MATRIX can 

support much broader categories of data-intensive 

applications with various data flow patterns, such as the 

Hadoop jobs, the iterative applications, and the irregular 

parallel applications. We will show how MATRIX performs 

for typical Hadoop applications. The MATRIX clients take 

any arbitrary application DAG as input. Before submitting 

the tasks, the clients insert the initial task dependency 

information into ZHT. Later, the schedulers update the 

dependency with the added data size and locality 

information when executing tasks, through the ZHT 

interfaces. We believe that MATRIX could be used to 

accelerate a large number of parallel programming systems, 

such as Swift [46], Pegasus [47], and Charm++ [49]. 

IV. EVALUATION 

In this section, we evaluate MATRIX by comparing it 
with YARN in processing typical Hadoop workloads, such 
as WordCount, TeraSort, RandomWriter and Grep, as well 
as an application in Bioinformatics, on the Amazon cloud up 
to 256 cores. We first run YARN with these workloads and 
obtain the trace files. Through the trace files, we generate 
workload DAGs that become the inputs of MATRIX. We 
also evaluate the scalability of MATRIX through simulations 
up to extreme scales with sub-second workloads. We aim to 
show that MATRIX is not only able to perform better than 
YARN for the workloads that are tailored for YARN, but 
also has the ability to enable Hadoop to scale to extreme 
scales for finer-grained sub-second workloads. 

A. YARN Configuration 

In the experiments, we use YARN version 2.5.1. 
Although newer version of YARN is released very 
frequently, we argue that it does not have a perceivable 
impact on what we are trying to study and present in this 
paper. For example, the centralized design and 
implementation are not going to change significantly in the 
coming releases in the near future. Here, we configure the 
HDFS block size to be 16MB. The usual Hadoop cluster 
configuration is from 32MB to 256MB, but we believe this is 
a reasonable change as we focus on studying the scheduling 
overhead of the frameworks. Increasing the block size will 
only increase the task length (or execution time) of the map 
tasks and decrease the total number of map tasks. Our 
conclusions on the scheduling performance improvement do 
not vary with the different HDFS block sizes. To fairly 
capture the traces of each task, we use the default map and 
reduce logging service. The logging mode is INFO, which is 

lightweight comparing with DEBUG or ALL. This is to 
minimize the impact of logging on Hadoop performance. To 
best characterize the overheads of the centralized scheduling 
and management, we use a stand-alone instance to hold the 
NameNode and ResourceManager daemons. The isolation of 
master and slaves guarantees that the performance of the 
Hadoop master is not compromised by co-located 
NodeManager or DataNode daemons. 

B. Experiment Environment 

We run experiments on Amazon Cloud using the 
“m3.large” instances up to 256 CPUs (128 instances). Each 
instance has 2 CPUs, 6.5ECUs, 7.5GB memory and 16GB 
storage of SSD, and uses the Ubuntu 14.04LTS distribution. 
For both YARN and MATRIX, on one instance, we control 
the number of tasks executed in parallel to be 2 (equals to the 
number of CPUs).  

C. Definitions of the Metrics 

We define two metrics to evaluate the performance: 

1) Efficiency: The Efficiency is the percentage of the 

ideal running time ( 𝑇𝑖𝑑𝑒𝑎𝑙 ) to the actual running time 

( 𝑇𝑎𝑐𝑡𝑢𝑎𝑙 ) of a workload, which quantifies the average 

utilization of the system. The higher efficiency ( (100 ×
𝑇𝑖𝑑𝑒𝑎𝑙 𝑇𝑎𝑐𝑡𝑢𝑎𝑙⁄ )%) indicates less scheduling overheads.  

Given a workload that has 𝑝 phases and one phase cannot 
be started until the previous one has been finished, we can 

compute the ideal running time, 𝑇𝑖𝑑𝑎𝑙 = ∑ 𝑇𝑖𝑑𝑒𝑎𝑙(𝜆)
𝑝
𝜆=1 , in 

which 𝑇𝑖𝑑𝑒𝑎𝑙(𝜆)  is the ideal running time of the λth  phase. 

Assuming in the λth  phase, on average, each core is 
executing 𝑘  tasks with an average length of 𝑙 . Therefore, 
𝑇𝑖𝑑𝑒𝑎𝑙(𝜆) = 𝑘 × 𝑙.  

2) Average Task-Delay Ratio: The average Task-Delay 
(td) Ratio, 𝑟𝑡𝑑̅̅ ̅̅ , is computed as the normalized difference 

between the average ideal task turnaround (itt) time, 𝑇𝑖𝑡𝑡
̅̅ ̅̅  , 

and the average actual task turnaround (att) time 𝑇𝑎𝑡𝑡
̅̅ ̅̅ ̅, which 

is 𝑟𝑡𝑑̅̅ ̅̅ = (𝑇𝑎𝑡𝑡
̅̅ ̅̅ ̅ − 𝑇𝑖𝑡𝑡

̅̅ ̅̅ ) 𝑇𝑖𝑡𝑡
̅̅ ̅̅⁄ . For each task 𝑛, the turnaround 

time (tt), denoted as 𝑇𝑡𝑡(𝑛) is the time interval between the 

time when the task is launched and the time when the task is 
finished. Both MATRIX and YARN can record the detailed 
timestamps of each task, from which, we can know the 
turnaround time of each task. Therefore, we can compute 
𝑇𝑎𝑡𝑡
̅̅ ̅̅ ̅ after running a workload that include 𝑘 tasks:  𝑇𝑎𝑡𝑡

̅̅ ̅̅ ̅ =
∑ 𝑇𝑡𝑡(𝑛)

𝑘
𝑛=1

𝑘
. Assuming on average, each core in the system is 

executing 𝑘 tasks with an average length of 𝑙. Therefore, the 
𝑛𝑡ℎ  task needs to wait (𝑛 − 1) × 𝑙  time before being 
executed, meaning that𝑇𝑡𝑡(𝑛) = (𝑛 − 1) × 𝑙 + 𝑙 = 𝑛𝑙.  

 Titt
̅̅ ̅̅ =

∑ (𝑛𝑙)𝑘
𝑛=1

𝑘
=

𝑛+1

2
× 𝑙  

This metric measures how fast a framework can response 
from each task’s perspective. The smaller rtd̅̅̅̅ means faster 
response time and lower scheduling overheads. 

We do not use the throughput as a metric, because we 
cannot tell how good the performance is for a given 
workload directly from the throughput number. These two 
metrics are more explicit in expressing the performance. 



D. Benchmarking Hadoop Workloads 

The first set of experiments run typical Hadoop 
workloads, such as WordCount, Terasort, RandomWriter, 
and Grep. The input is a 10GB data file extracted from the 
Wikipedia pages. We do weak-scaling experiments that 
process 256MB data per instance. At 128 instances, the data 
size is 32GB including 3.2 copies of the 10GB data file. 

1) WordCount 
The WordCount is a typical two-phase Hadoop workload. 

The map task count the frequency of each individual word in 
a subset data file, while the reduce task shuffles and collects 
the frequency of all the words. Figure 2 and Figure 3 show 
the performance comparisons between MATRIX and YARN. 

 

Figure 2: Efficiency for WordCount 

 
Figure 3: Average Task-Delay Ratio for WordCount 

From Figure 2, we see that at all scales, MATRIX 
outperforms YARN by 1.26X on average for tasks with 
average lengths ranging from 13 to 26 sec. As scale increases 
from 2 cores to 256 cores, YARN’s efficiency drops by 13%, 
while MATRIX’s drops by only 5% and maintains 93%. 
These results indicate that MATRIX is more scalable than 
YARN, due to the distributed architecture and technique that 
optimizes both load balancing and data locality. 

Figure 3 compares the average Task-Delay Ratio 
between MATRIX and YARN, and shows the ideal average 
task turnaround time for all the scales. MATRIX achieves 
performance that is quite close to the ideal case. The added 
overheads (quantified by the average Task-Delay Ratio) of 
MATRIX are much more trivial (20X less on average) than 
that of YARN. This is because each scheduler in MATRIX 
maintains task queues, and all the ready tasks are put in task 
ready queues as fast as possible. On the contrary, YARN 
applies a pull-based model that lets the free containers pull 

tasks from the application master, incurring significant Ping-
Pong overheads and poor data-locality. 

2) TeraSort 
TeraSort is another two-phase Hadoop workload that 

performs in-place sort of all the words of a given data file. 
Figure 4 and Figure 5 present the comparison results 
between MATRIX and YARN. 

 

Figure 4: Efficiency for TeraSort 

 
Figure 5: Average Task-Delay Ratio for TeraSort 

Figure 4 illustrates the efficiency comparisons. We see 
that YARN can achieve performance that is close to 
MATRIX, however, there is still a 10% discrepancy on 
average. This is because in TeraSort, the time spent in the 
reduce phase dominates the whole process. The final output 
data volume is as large as the initial input one, but the 
number of reduce tasks is much less than that of the map 
tasks (In our configurations, there are 8 reduce tasks at 256 
cores, and 1 reduce task at all other scales). Therefore, load 
balancing is less important. 

However, in terms of the task turnaround time, MATRIX 
still achieves much faster responding time with much smaller 
overheads (10X less on average), according to Figure 5. 

3) RandomWriter 
The RandomWriter workload is consist of only map tasks, 

and each task writes an amount of random data to the HDFS 
with a summation of 10GB data per instance. Figure 6 and 
Figure 7 give the performance comparison results. 

Figure 6 shows that at all scales, MATRIX achieves 
much better performance (19.5% higher efficiency on 
average) than YARN. In addition, as the scale increases, 
YARN’s efficiency drops dramatically, from 95% at 2 cores 
to only 66% at 256 cores. The trend indicates that at larger 
scales, YARN efficiency would continue to decrease. On the 
contrary, MATRIX can maintain high efficiency at large 
scales and the efficiency-decreasing rate is much slower 
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comparing with YARN. We believe that as the scales keep 
increasing to extreme-scales, the performance gap between 
MATRIX and YARN would be getting bigger and bigger. 

 
Figure 6: Efficiency for RandomWriter 

 
Figure 7: Average Task-Delay Ratio for RandomWriter 

The reason that MATRIX can significantly beat YARN 
for the RandomWriter workload is not only because the 
distributed scheduling architecture and technique can 
perform better than the centralized ones of YARN, but also 
because MATRIX writes all the data locally while YARN 
writes all the data to the HDFS that may distribute the data to 
the remote data nodes.   

In terms of the average Task-Delay Ratio presented in 
Figure 7, again, MATRIX can response to per-task much 
faster than YARN, due to the pushing mechanism used in the 
MATRIX scheduler that eagerly pushes all the ready tasks to 
the task ready queues. 

4) Grep 
The last Hadoop benchmark is the Grep workload that 

searches texts to match the given pattern in a data file. In 
YARN, the Grep workload is divided into 2 Hadoop jobs, 
namely search and sort. Both jobs have a two-phase 
MapReduce data pattern. However, MATRIX converts the 
entire Grep workload to one application DAG that has a 
four-phase data flow pattern. The output of the reduce phase 
of the search job is the input of the map phase of the sort job. 
The comparison results between MATRIX and YARN with 
the Grep workload are shown in Figure 8 and Figure 9. 

Figure 8 shows that MATRIX performs much better than 
YARN with a performance gain of 53% on average (1.53X 
speedup). YARN achieves relatively low efficiency, even at 
2-core scale. The reasons are two-folds. First, the Grep 
workload has a wide distribution of task lengths. Based on 
the targeting text pattern, map tasks may execute 
significantly different amounts of times and generate results 
ranging from empty to large volumes of data when given 

different parts of the data file. This huge heterogeneity of 
task length leads to poor load balancing in YARN. The other 
reason is that YARN needs to launch 2 Hadoop jobs for the 
Grep workload, which doubles the job launching overheads. 

 
Figure 8: Efficiency for Grep 

 
Figure 9: Average Task-Delay Ratio for Grep 

However, MATRIX can optimize both load balancing 
and data-locality through the work stealing technique. This is 
preferable for heterogeneous workloads. Besides, MATRIX 
decomposes the workload as one DAG and launches all tasks 
once as fast as possible, introducing much less overheads. 
Figure 9 validates this justification by showing that 
MATRIX responses 20X faster on average than YARN. 

E. Ligand Clustering Application in Bioinformatics 

The previous comparisons use benchmarking workloads, 
and MATRIX has shown better scalability than YARN for 
all the workloads. In this section, we show how they perform 
on a real data-intensive application in bioinformatics, namely 
the Ligand Clustering application [37]. 

Large dataset clustering is a challenging problem in the 
field of bioinformatics, where many researchers resort to 
MapReduce for a viable solution. The real-world application 
experimented in this study is an octree-based clustering 
algorithm for classifying protein-ligand binding geometries, 
which has been developed in the University of Delaware. 
The application is implemented in Hadoop and is divided 
into iterative Hadoop jobs. In the first job, the map tasks read 
the input datasets that contain the protein geometry 
information. Depending on the size of the problem, the input 
dataset size varies from giga bytes to tera bytes and the 
workloads are considered as both data-intensive and 
compute-intensive. The output of the first job is the input of 
the second one; this applies iteratively. The output data size 
is about 1% of the input data size in the first job. Thus, the 
map tasks of the first job dominate the processing. 
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Like the benchmarking workloads, in this application, the 
input data size is 256MB per instance based on the 59.7MB 
real application data. We apply 5 iterative Hadoop jobs, 
including 10 phases of map and reduce tasks. We run the 
application in both MATRIX and YARN, and the 
performance results are given in Figure 10 and Figure 11. 

 
Figure 10: Efficiency for the Bioinformatics application 

Figure 10 shows that as the scale increases, the efficiency 
of YARN is decreasing significantly. At 256-core scale, 
YARN only achieves 30% efficiency, which is one third of 
that achieved (91%) through MATRIX. The decreasing trend 
is likely to hold towards extreme-scales for YARN. On the 
other hand, the efficiency of MATRIX has a much slower 
decreasing trend and is becoming stable at 64-core scale. 
These results show the potential extreme scalability of 
MATRIX, which we will explore through simulations later. 

The contributing factors of the large performance gain of 
MATRIX include the distributed architectures of the 
resource management, task scheduling, and metadata 
management; the distributed scheduling technique; as well as 
the general DAG decomposition of any application with 
arbitrary data flow pattern. All these design choices of 
MATRIX are radically different from those of YARN. 

 
Figure 11: Average Task-Delay Ratio for the application 

Like the Grep workload, YARN launches the 5 iterative 
Hadoop jobs one by one, incurring large amount of 
launching and Ping-Pong overheads, whilst MATRIX 
launches the whole application DAG once. This difference is 
another factor that causes the speed gap between YARN and 
MATRIX in responding to per-task shown in Figure 11  
(MATRIX achieves 9X faster than YARN on average). 

F. Fine-grained Data Processing Workloads 

We have shown that MATRIX is more scalable than 
YARN in processing both typical benchmarking workloads 
and a real application in Bioinformatics. All the workloads 
evaluated so far are relatively coarse-grained (e.g. average 

task length of tens of seconds), comparing with the Berkeley 
Spark MapReduce stack [38] that targets finer-grained 
workloads (e.g. average task length of hundreds of 
milliseconds). We have identified that YARN is not well 
suited for running fine-grained workloads, due to the pull-
based task scheduling mechanism and the HDFS centralized 
metadata management. To validate this, we run a fine-
grained workload test of YARN at 64 cores for the Terasort 
workload by reducing the block size of HDFS to 256KB, 
100X smaller than the previous course-grained experiments. 
The average task length should be only 1/100 of that of the 
course-grained workloads (286ms according to Figure 4). 
However, YARN’s logs show that the average task execution 
time decreases only by half with about 14 sec, leading to the 
efficiency as low as 2.04% (286/14000). 

On the contrary, MATRIX is designed to process the 
fine-grained sub-second workloads [28]. In [36], MATRIX 
achieved 85%+ efficiency for 64ms workload at 4K-core 
scales on an IBM BG/P supercomputer. In addition, in [39], 
we have compared MATRIX with the Spark sparrow 
scheduler with NOOP sleep 0 tasks and MATRIX was 9X 
faster than sparrow in executing the tasks. 

To further justify that MATRIX has the potential to 
enable MapReduce to scale to extreme-scales, we explore the 
scalability of MATRIX through both real system (256-core 
scale) and simulations (64K-core scale) for fine-grained 
workloads. We choose the Ligand real application, reduce 
the task length of each task by 100X, increase the number of 
map tasks in the first iteration (there are 5 iterations of jobs 
in total) by 100X, and keep the task dependencies the same. 
The average task length in this workload ranges from 80ms 
to 166ms at different scales (refers to Figure 10 about the 
coarse-grained workload ranging from 8sec to 16.6sec).  

We run MATRIX with this workload up to 256 cores. 
Besides, we conduct simulations of MATRIX for this 
workload at 64K-core scale, through the SimMatrix 
simulator [41]. SimMatrix is a lightweight discrete event 
simulator of task execution fabric, developed in Java. 
SimMatrix simulates the distributed task scheduling 
architecture, the distributed scheduling technique, and the 
KVS metadata management. We feed the fine-grained 
workloads in SimMatrix. Beyond 256 cores, we increase the 
number of tasks linearly with respect to the system scales by 
repeating the workloads at 256 cores. We show the 
efficiency results of MATRIX running both the fine-grained 
and coarse-grained workloads, as well as SimMatrix running 
the fine-grained workloads in Figure 12.  

When the granularity increases by 100X, the efficiency 
only drops about 1.5% on average up to 256 cores (blue line 
vs. the solid red line). This shows great scalability of 
MATRIX in processing the fine-grained workloads. From 
the simulation’s perspective, we run SimMatrix up to 64K 
cores and validate SimMatrix against MATRIX within 256-
core scales. The normalized difference (black line) between 
SimMatrix and MATRIX is only 4.4% on average, which 
shows that SimMatrix is accurate and the simulation results 
are convincible. At the 64K cores, the efficiency maintains 
86.8% for the workload of average task length of 150ms. 
According to the efficiency trend, we can predict that at the 

99% 99%
94% 91% 91%

57%

69%

55%

40%
30%

0

10

20

30

40

50

0%

20%

40%

60%

80%

100%

2 4 16 64 256

A
v
e
ra

g
e
 T

a
s
k
 L

e
n
g
th

 
(s

e
c
)

E
ff
ic

ie
n
c
y

Scale (No. of cores)

MATRIX efficiency YARN efficiency Average task length

0.056
0.102 0.085 0.090

0.025

0.563

0.424

0.730

0.567

0.372

0

30

60

90

120

150

180

0

0.15

0.3

0.45

0.6

0.75

0.9

2 4 16 64 256

A
v
e
ra

g
e
 T

a
s
k
 T

u
rn

a
ro

u
n
d
 

T
im

e
 (

s
e
c
)

A
v
e
ra

g
e
 T

a
s
k
-D

e
la

y 
R

a
ti
o

Scale (No. of cores)

MATRIX average Task-Delay Ratio
YARN average Task-Delay Ratio
Ideal average task turnaround time



1M-core scale, the efficiency will be 85.4% for this fine-
grained workload. These results show that MATRIX has the 
potential to enable Hadoop to scale to extreme scales, even 
for the fine-grained sub-second workloads. 

 

Figure 12: MATRIX for sub-second Bioinformatics workloads 

V. CONCLUSIONS & FUTURE WORK 

Large-scale Internet applications are processing large 
amount of data on the commodity cluster processors. 
Although the Hadoop framework has been prevalent for 
running these applications, there are inherent design issues 
that prevent Hadoop from scaling to extreme scales, given 
the fact that both of the data volumes and the system scale 
are increasing exponentially. This paper proposed to leverage 
the distributed design wisdoms of the MATRIX task 
execution framework to overcome the scaling limitations of 
Hadoop towards extreme scales. MATRIX addressed the 
scaling issues of YARN by employing distributed resource 
management, distributed data-aware task scheduling, and 
distributed metadata management using key-value stores.  

We compared MATRIX with YARN using typical 
Hadoop workloads and the application in Bioinformatics up 
to 256 cores. Table 1 summarizes the average performance 
results of both MATRIX and YARN for different workloads 
for all scales. We see on average of all the Hadoop 
workloads, MATRIX outperforms YARN by 1.27X at all 
scales on average. For the application in Bioinformatics 
(BioApp), MATRIX outperforms YARN by 2.04X. We also 
explored the scalability of MATRIX through both real 
system and simulations at extreme scales [42] for fine-
grained sub-second workloads. The simulations indicate 86.8% 
efficiency at 64K-core scale for 150ms workloads.  

In the future, we will continue to compare SimMatrix 
with the YARN simulator, YARNsim [55][56][57], at 
extreme scales. We predict that MATRIX has the potential to 
enable MapReduce to scale to extreme-scale distributed 
systems. We will integrate MATRIX with the FusionFS [35] 
distributed file system. FusionFS assumes that each compute 
node will have local storage, and all the file servers are 
writing the data files locally to eliminate the data movement 
overheads introduced by stripping the data files as the HDFS 
does. FusionFS supports the POSIX interface and applies 
ZHT for distributed file metadata management. FusionFS 
will also explore the burst buffer technique [40] as a caching 

layer to enable faster operation speed and asynchronous 
check pointing. MATRIX will rely on FusionFS for scalable 
data management, which could enable the support of general 
scientific data formats [59][60][62][63], as opposed to the 
specialized HDFS one in Hadoop. 

Table 1: Efficiency results summary of MATRIX and YARN 

Workloads 
Task 

Length  

MATRIX 

Efficiency 

YARN 

Efficiency 

Average Speedup 

(MATRIX/YARN) 

WordCount 21.2sec 95.2% 76.0% 1.26 

TeraSort 20.1sec 95.9% 87.0% 1.10 

Random 

Writer 
36.2sec 95.8% 81.4% 1.20 

Grep 11.5sec 93.0% 62.0% 1.53 

BioApp 12.3sec 94.9% 50.2% 2.04 

Fine-grained 

BioApp 

128.5 

ms 
93.5% N/A N/A 

Another future work will be integrating MATRIX with 
the Hadoop application layer, so that the application codes 
need not to be changed [54]. Currently, in MATRIX, the 
applications need to be re-programmed as the workload 
DAGs, so that the MATRIX client can submit them. In the 
future, we will develop interfaces between the Hadoop 
applications and MATRIX, and expose the same APIs as 
YARN does. To enable MATRIX to support broader 
categories of applications, we will investigate to change the 
MATRIX application interfaces to cater to the general Pilot-
abstractions of jobs [50], in-situ applications [58], so that 
MATRIX can run a general category of data-intensive 
applications on all of HPC [66][68], Hadoop and Cloud 
infrastructures [64].  
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