
Overcoming Hadoop Scaling Limitations through Distributed Task Execution

Ke Wang*, Ning Liu*, Iman Sadooghi*, Xi Yang*, Xiaobing Zhou§,

Tonglin Li*, Michael Lang†, Xian-He Sun*, Ioan Raicu*‡
*Illinois Institute of Technology, §Hortonworks Inc.

†Los Alamos National Laboratory, ‡Argonne National Laboratory

{kwang22, nliu8, isadoogh, xyang34}@hawk.iit.edu, xzhou@hortonworks.com,

tli13@hawk.iit.edu, mlang@lanl.gov, sun@iit.edu, iraicu@cs.iit.edu

Abstract—Data driven programming models like

MapReduce have gained the popularity in large-scale data

processing. Although great efforts through the Hadoop

implementation and framework decoupling (e.g. YARN, Mesos)

have allowed Hadoop to scale to tens of thousands of

commodity cluster processors, the centralized designs of the

resource manager, task scheduler and metadata management

of HDFS file system adversely affect Hadoop’s scalability to

tomorrow’s extreme-scale data centers. This paper aims to

address the YARN scaling issues through a distributed task

execution framework, MATRIX, which was originally designed

to schedule the executions of data-intensive scientific

applications of many-task computing on supercomputers. We

propose to leverage the distributed design wisdoms of

MATRIX to schedule arbitrary data processing applications in

cloud. We compare MATRIX with YARN in processing typical

Hadoop workloads, such as WordCount, TeraSort, Grep and

RandomWriter, and the Ligand application in Bioinformatics

on the Amazon Cloud. Experimental results show that

MATRIX outperforms YARN by 1.27X for the typical

workloads, and by 2.04X for the real application. We also run

and simulate MATRIX with fine-grained sub-second

workloads. With the simulation results giving the efficiency of

86.8% at 64K cores for the 150ms workload, we show that

MATRIX has the potential to enable Hadoop to scale to

extreme-scale data centers for fine-grained workloads.

Keywords—data driven programming model; MapReduce;

task execution framework; scheduling; extreme scales

I. INTRODUCTION

Applications in the Cloud domain (e.g. Yahoo! weather
[1], Google Search Index [2], Amazon Online Streaming [3],
and Facebook Photo Gallery [4]) are evolving to be data-
intensive that process large volumes of data for interactive
tasks. This trend has led to the programming paradigm
shifting from the compute-centric to the data driven. Data
driven programming models [5], in the most cases,
decompose applications to embarrassingly parallel tasks that
are structured as Direct Acyclic Graph (DAG) [6]. In an
application DAG, the vertices are the discrete tasks, and the
edges represent the data flows from one task to another.

MapReduce [7] is the representative of the data driven
programming model that aims at processing large-scale data-
intensive applications in Cloud on commodity processors
(either an enterprise cluster, or private/public Cloud [61]). In
MapReduce, applications are divided into two phases (i.e.
Map and Reduce) with an intermediate shuffling procedure,

and the data is formatted as unstructured (key, value) pairs.
The programming framework is comprised of three major
components: the resource manager manages the global
compute nodes, the task scheduler places a task (either a map
task or a reduce task) on the most suitable compute node, and
the file system stores the application data and metadata.

The first generation Hadoop [8] (Hadoop_v1, circa 2005)
was the open-source implementation of the MapReduce. In
Hadoop_v1, the centralized job tracker plays the roles of
both resource manager and task scheduler; the HDFS is the
file system [9] to store the application data; and the
centralized namenode is the file metadata server. In order to
promote Hadoop to be not only the implementation of
MapReduce, but one standard programming model for a
generic Hadoop cluster, the Apache Hadoop community
developed the next generation Hadoop, YARN [10] (circa
2013), by decoupling the resource management
infrastructure with the programming model. From this point,
when we refer to Hadoop, we mean YARN.

YARN utilizes a centralized resource manager (RM) to
monitor and allocate resources. Each application delegates a
centralized per-application master (AM) to schedule tasks to
resource containers managed by the node manager (NM) on
the computing nodes. The HDFS file system and centralized
metadata management remain the same. Decoupling the
resource management infrastructure with the programming
model enables Hadoop to run many application frameworks
(e.g. MapReduce, Iterative application, MPI, and scientific
workflows) and eases the resource sharing of the Hadoop
cluster. Besides, as the scheduler is separated from the RM
with the implementation of the per-application AM, the
Hadoop has achieved unprecedented scalability. Similarly,
the Mesos [11] resource sharing platform is another example
of the scalable Hadoop programming frameworks.

However, there are inevitable design issues that prevent
Hadoop from scaling to extreme scales, the scales that are 2
to 3 orders of magnitude larger than that of today’s
distributed systems; similarly, today’s scales do not support
several orders of magnitude fine grained workloads (e.g. sub-
second tasks). The first category of issues come from the
centralized paradigm. Firstly, the centralized RM of YARN
is a bottleneck. Although the RM is lightweight due to the
framework separation, it would cap the number of
applications supported concurrently as the RM has limited
processing capacity. Secondly, the centralized per-
application AM may limit the task placement speed when the
task parallelism grows enormously for the applications in

certain domains. Thirdly, the centralized metadata
management of HDFS is hampering the metadata query
speed that will have side effects on the task placement
throughput for data-locality aware scheduling. The other
issue comes from the fixed division of Map and Reduce
phases of the Hadoop jobs. This division is simple and works
well for many applications, but not so much for more
complex applications, such as iterative MapReduce [12] that
supports different levels of task parallelism, and the
irregular applications with random DAGs. Finally, the
Hadoop framework is not well suited for running fine-
grained workloads with task durations of sub-seconds, such
as the lower-latency interactive data processing applications
[25]. The reason is twofold. One is that the Hadoop employs
a pull-based mechanism. The free containers pull tasks from
the scheduler; this causes at least one extra Ping-Pong
overhead per-request in scheduling. The other one is that the
HDFS suggests a relatively large block size (e.g. 64MB)
when partitioning the data, in order to maintain efficient
metadata management. This confines the workload’s
granularity to be tens of seconds. Although the
administrators of HDFS can easily tune the block size, it
involves manual intervention. Furthermore, too small block
sizes can easily saturate the metadata server.

This work proposes to utilize an existing distributed task
execution framework, MATRIX [34][44][48], to do scalable
task placement for Hadoop workloads, with the goal of
addressing the Hadoop scaling issues. MATRIX was
originally developed to schedule the fine-grained data-
intensive many-task computing (MTC) [45] applications on
supercomputers. MATRIX delegates a scheduler on each
compute node to manage local resources and schedule tasks,
and utilizes a data-aware work stealing technique to optimize
task placement for the best load balancing and exploitation
of data-locality. A distributed key-value store, namely ZHT
[15][16][17][18], is applied to store task metadata in a
scalable and fault tolerant way. We leverage the distributed
design wisdoms of MATRIX in scheduling data processing
applications in clouds. We compare MATRIX with YARN
using typical Hadoop workloads, such as WordCount,
TeraSort, RandomWriter, and Grep, as well as an application
in Bioinformatics. We also run and simulate MATRIX with
fine-grained sub-second workloads and MATRIX shows the
potential to enable Hadoop to scale to extreme scales. The

contributions of this paper are highlighted as follows:

 Proposed to address scalability issues of Hadoop
through decentralized scheduling with MATRIX

 An inclusive comparison between MATRIX and
YARN with both benchmarking and real application
workloads, up to 256 cores on the AWS Cloud

 An evaluation of the scalability of MATRIX for fine-
grained sub-second workloads through both real
systems and simulations at extreme scales

The rest of this paper is organized as follows. Section II
presents the related work. Section III analyzes the Hadoop
design issues, introduces MATRIX, and shows how
MATRIX can address the Hadoop scaling issues. Section IV
presents the evaluation results. Section V concludes the
paper and lists the future work.

II. RELATED WORK

Ever since the emergence of the MapReduce and Cloud
computing, the Apache community disclosed the Hadoop_v1
[8] implementation. As the system scale is growing
exponentially and the applications are experiencing data
explosion, there are extensive research efforts that aimed at
addressing the scalability issues, such as resource managers,
task schedulers and metadata management, to keep Hadoop
scalable with the same pace of the growth of distributed
systems and data volumes in data processing applications.

YARN [10] and Mesos [11] are two frameworks that
decouple the resource management infrastructure from the
task scheduler of the programming model to enable efficient
resource sharing in general commodity Hadoop clusters for
different data-intensive applications. Both of them apply a
centralized RM to allocate resources to applications. The
AM then will be in charge of scheduling tasks onto the
allocated compute nodes. The difference between them is
that Mesos employs an AM for one category of applications,
while YARN is much finer grained in that it uses an AM per
application, which, in theory, should be more scalable.
Although they have improved the scalability and efficiency
of the resource sharing in Hadoop clusters significantly with
the separation, the centralized RM is still a barrier towards
extreme scales or of the support for fine-grained workloads.
Omega [43] is a distributed scheduling framework for
Google’s data-intensive production workloads. Omega
deploys multiple schedulers, and each one maintains a
private resource state of the whole cluster to claim resources
and make scheduling decisions through an atomic operation.
The private states are synchronized with a master copy of the
global state. This design eliminates the bottleneck of the
centralized resource allocator. However, the global state
synchronization introduces considerable overheads. In
addition, Omega is not a system in the public domain that
Hadoop can take advantage of. The Hadoop coupled with
MATRIX is a step towards a practical system integration that
can accelerate Hadoop’s scalability.

Another research aims to improve the Hadoop schedulers.
Most of work focuses on optimizing the scheduling policies
to meet different requirements in a centralized task scheduler.
The Hadoop default schedulers include the Capacity
Scheduler (CS) [19], the Fair Scheduler (FS) [20] and the
Hadoop On Demand (HOD) Scheduler (HS) [21]. Each of
them has a different design goal: the CS aims at offering
resource sharing to multiple tenants with the individual
capacity and performance SLA; the FS divides resources
fairly among job pools to ensure that the jobs get an equal
share of resources over time; the HS relies on the Torque
resource manager to allocate nodes, and allows users to
easily setup Hadoop by provisioning tasks and HDFS
instances on the nodes. Rasooli and Down proposed a hybrid
scheduling approach [22] that can dynamically select the best
scheduling algorithm (e.g. FIFO, FS, and COSHH [23]) for
heterogeneous systems. To optimize fairness and locality,
Zaharia et. al proposed a delay scheduling algorithm [24]
that delays the scheduling of a job for a limited time until
highly possible to schedule the job to where the data resides.

These efforts have limited advancement to the scalability
because they work within a single scheduler. Some early
work towards distributed resource management was
GRUBER [51], which focused on distributed brokering of
Grid resources. Sparrow [25] is a distributed task scheduler
that applies multiple schedulers with each one knowing all
the nodes to schedule fine-grained sub-second tasks. Each
scheduler probes multiple nodes and implements a pushing
mechanism to place tasks on the least overloaded node with
early binding. This is not scalable under heterogeneous
workloads that have wide distribution of task length due to
the fact that tasks cannot be moved after submission for load
balancing’s purpose. Furthermore, Sparrow works in tandem
with Spark [38], and hence vanilla Hadoop applications
cannot be executed with Sparrow easily.

Another related research direction is scalable metadata
management. To optimize the metadata management and
usage for small files, Machey et al. provided a mechanism
that utilizes the Hadoop “harballing” compression method to
reduce the metadata memory footprint [26]. Zhao et al.
presented a metadata-aware storage architecture [27] that
utilizes the classification algorithm of merge module and
efficient indexing mechanism to merge multiple small files
into Sequence File, aiming to solve the namenode memory
bottleneck. However, neither work touched the base of
addressing the scalability issues of the centralized namenode
in processing the tremendously increased large amount of
metadata access operations. Haceph [29] is a project that
aims to replace the HDFS by the Ceph file system [30]
integration with the Hadoop POSIX IO interfaces. Ceph uses
a dynamic subtree partitioning technique to divide the name
space onto multiple metadata servers. This work is more
scalable, but may not function well under failures due to the
difficulty of re-building a tree under failures.

III. DISTRIBUTED DATA DRIVEN TASK PLACEMENT

In this section, we first analyze the design issues that
result in the scalability problems of Hadoop. We then
introduce the MATRIX task execution framework, and
propose to apply its distributed designs to address the issues.

A. Hadoop Design Issues

Although YARN has improved the Hadoop scalability
significantly, there are fundamental design issues that are
capping the scalability of Hadoop towards extreme scales.

1) Centralized resource manager: The resource
manager (RM) is a core component of the Hadoop
framework. It offers the functionalities of managing,
provisioning, and monitoring the resources (e.g. CPU,
memory, network bandwidth) of the compute nodes of a
Hadoop cluster. Although YARN decouples the RM from
the task scheduler to enable Hadoop running different
frameworks, the RM is still centralized. One may argue that
the centralized design should be scalable as the processing
ability of a single compute node is increasing exponentially.
However, the achieved network bandwith from a single
node to all the compute nodes is bounded.

2) Application task scheduler: YARN delegates the
scheduling of tasks of different applications to each

individual application master (AM), which makes decisions
to schedule tasks among the allocated resources (in the form
of containers managed by the node manager on each
compute node). Task scheduling component is distributed in
the sense of scheduling different applications. However,
from per-application’s perspective, the task scheduler in the
AM still has a centralized design that has too limited
scheduling ability to meet the evergrowing task amount and
granularity. In addition, Hadoop employs a pull-based
mechanism, in which, the free containers pull tasks from the
scheduler. This causes at least one extra Ping-Pong
overhead in scheduling. One may have doubt about the
exsistance of an application which can be decomposed as so
many tasks that needs a resource allocation of all the
compute nodes. But, it is surely happening given the
exponential growth of the application data sizes.

3) Centralized metadata management: The HDFS is the
default file system that stores all the data files in the
datanodes through random distributions of data blocks, and
keeps all the file/block metadata in a centralized namenode.
The namenode monitors all the datanodes. As the data
volumes of applications are growing in a fast rate, the
number of data files are increasing significantly, leading to
much higher demands of the memory footprint and metadata
access rate that can easily overwelm the centralized
metadata management. Things could be much worse for
abundant small data files. In order to maintain an efficient
metadata management in the centralized namenode, the
HDFS suggests a relatively large block size (e.g. 64MB)
when partitioning the data files. This is not well suited for
the fine-grained lower latency workloads.

4) Limited data flow pattern: The Hadoop jobs have the
fixed two-layer data flow pattern. Each job is decomposed
as embarasingly parallel map-phase tasks with each one
processing a partition of the input data. The map tasks
generate intermediate data which is then aggregated by the
reduce-phase tasks. Although many applications follow this
simple pattern, there are still quite a few applications that
are decomposed with much more complex workload DAGs.
One example is the category of irregular parallel
applications that have unpredictable data flow patterns.
These applications need dynamic scalable scheduling
echniques, such as work stealing, to achive distributed load
balancing. Another category of the applications with
complex data flow patterns are the iterative applications that
aim to find an optimal solution through the convergence
after iterative computing steps. Though one can divide such
an application as multiple steps of Hadoop jobs, Hadoop
isn’t able to run these application steps seamlessly.

B. MATRIX Task Execution Framework

MATRIX is a distributed task execution framework
designed to schedule MTC scientific applications on tightly-
coupled cluster and supercomputers. MATRIX achieved 87%
efficiency at 200 cores in scheduling two data-intensive
applications, Image stacking in Astronomy and All-pairs in
Bioinformatics, with average task lengths of 100ms [31][53].

Figure 1 shows the MATRIX architecture. MATRIX is
fully distributed by delegating one scheduler on each

compute node. On the same compute node, there is an
executor and a key-value store (KVS) server. The scheduler
is responsible for managing local resource and placing tasks
onto the most suitable compute node, for optimizing both
load balancing and data-locality. The executor executes the
tasks that have been scheduled in local with multiple (usually
equals to the number of cores of a compute node) parallel
executing threads. MATRIX utilizes the KVS, ZHT [52][15],
to keep the metadata of tasks and data files in a scalable way.
Each scheduler is initialized as a ZHT client that has a global
knowledge of all the ZHT servers, and can query and update
the task metadata transparently through the APIs (lookup,
insert, remove) that hash the record key to direct the requests
to correct server. ZHT scaled up to 32K cores with high
throughput of 18M ops/sec and low latency of 1.5ms [15].

KVS server

Scheduler

Executor KVS server

Scheduler

Executor

Compute Node Compute Node

……

Fully-Connected

communication

Client Client Client

Figure 1: MATRIX architecture

The schedulers implemented a data-aware work stealing
technique to optimize both load balancing and data locality.
Each scheduler has four task queues, namely waiting queue
(WaitQ), dedicated ready queue (LReadyQ), shared ready
queue (SReadyQ), and complete queue (CompleteQ), which
store tasks in different states. The WaitQ keeps tasks that
wait for their parents to be done. The LReadyQ stores ready
tasks whose majority of required data is local; these tasks are
only executed locally. The ready tasks in the SReadyQ can
be migrated to any node through the random work stealing
technique (the idle schedulers steal tasks from the overloaded
randomly chosen neighbors) for the purpose of load
balancing, because the required data size of the tasks is so
small that transferring it involves little overhead. The
finished task is moved to the CompleteQ. The scheduler then
updates the metadata of each child to notify the completion
of this parent by querying ZHT.

C. Leveraging MATRIX Distributed Design Wisdoms

Although MATRIX was designed for scheduling fine-
grained MTC data-intensive applications on supercomputers
[65][67], we show how to leverage the MATRIX distributed
design wisdoms to overcome the Hadoop scaling limitations
for arbitrary data processing applications.

1) Distributed Resource Management: Instead of
employing a single RM to manage all the resources as the
Hadoop framework does, in MATRIX, each scheduler
maintains a local view of the resources of an individual
node. The per-node resource manager is demanded, because
the physical computing and storage units are not only
increasing in terms of sizes, but are becoming more
complex, such as hetergeneous cores and various types of

storages (e.g. NVRAM, spinning Hard Disk, and SSD). The
demand is more urgent in a virtualized Cloud environment,
in which, the RM also needs to conduct resource binding
and monitoring, leading to more workloads.

2) Distributed Task Scheduling: The schedulers are not
only in charge of resource management, but responsible for
making scheduling decisions through the data-aware work
stealing technique. The distributed scheduling architecture is
scalable than a centralized one, since all the schedulers
participate in making scheduling decisions. In addition,
MATRIX can tune the work stealing parameters (e.g.
number of tasks to steal, number of neighbors, polling
interval) at runtime to reduce the network communication
overheads of distributed scheduling. The distributed
architecture enables the system to achieve roughly the linear
scalability as the system and workload scale up.

3) Distriuted Metadata Management: We can leverage
distributed KVS to offer a flat namespace in managing the
task and file metadata. Comparing with other ways, such as
sub-tree partitioning [32] and consistent hashing [33], flat
namespace hashing has the ability to achieve both good load
balancing, and faster metadata accessing rate with zero-hop
routing. In sub-tree partitioning, the namespace is organized
in sub trees rooted as individual directory, and the sub trees
are managed by multiple metadata servers in a distributed
way. As the directories may have wide distribution of
number of files and file sizes, the partitioning may result in
poor load balancing. In consistency hashing, each metadata
server has partial knowledge of the others, leading to extra
routing hops needed to find the right server that can satisfy a
query. For example, MATRIX combines the task and file
metadata as (key, value) pairs that represent the data
dependencies and data file locations and sizes of all the
tasks in a workload. For each task, the key is the “taskId”,
and the value specifies the “parent” and “child” tasks, as
well as the names, locations, and sizes of the required data
files. One may argue that the full connectivity of the KVS
will be an issue at extreme scales. However, our pervious
simulation results [13][14] showed that in a fully connected
architecture, the number of communication messages
required to maintain a reliable service is trivial when
comparing with the number of request-processing messages.

4) Fault Tolerance: Fault tolerance is an important
design concerns, especially for extreme-scale distributed
systems that have high failure rates. MATRIX can tolerate
failures with a minimum effort due to the distributed nature,
the stateless feature of the schedulers, and the integration of
ZHT. Failures of a node only affect the tasks, data files, and
metadata on that node, and can be resolved easily as
follows. The affected tasks can be acknowledged and
resumitted to other schedulers; A part of the data files were
copied and cached in other nodes when they were
transmitted for executing tasks. In the future, we will rely on
the underneath file system to handle the affected files; As
ZHT stores the metadata, and ZHT has implemented
failure/recovery, replication and consistency mechanisms,
MATRIX needs to worry little about the affected metadata.

5) Elastic Property: MATRIX allows the resources to
be dynamically expanded and shrinked in the elastic Cloud

environment. The resource shrinking is regarded as resource
failure in terms of consequences, and can be resolved
through the same techniques of handing failures. When
adding an extra compute node, a new scheduler and ZHT
server will also be introduced. ZHT has already
implemented a dynamic membership mechanism to
undertake the newly added server. This mechanism can also
be used in MATRIX to notify all the existing schedulers
about the extra added scheduler.

6) Support of arbitrary application DAG: MATRIX can

support much broader categories of data-intensive

applications with various data flow patterns, such as the

Hadoop jobs, the iterative applications, and the irregular

parallel applications. We will show how MATRIX performs

for typical Hadoop applications. The MATRIX clients take

any arbitrary application DAG as input. Before submitting

the tasks, the clients insert the initial task dependency

information into ZHT. Later, the schedulers update the

dependency with the added data size and locality

information when executing tasks, through the ZHT

interfaces. We believe that MATRIX could be used to

accelerate a large number of parallel programming systems,

such as Swift [46], Pegasus [47], and Charm++ [49].

IV. EVALUATION

In this section, we evaluate MATRIX by comparing it
with YARN in processing typical Hadoop workloads, such
as WordCount, TeraSort, RandomWriter and Grep, as well
as an application in Bioinformatics, on the Amazon cloud up
to 256 cores. We first run YARN with these workloads and
obtain the trace files. Through the trace files, we generate
workload DAGs that become the inputs of MATRIX. We
also evaluate the scalability of MATRIX through simulations
up to extreme scales with sub-second workloads. We aim to
show that MATRIX is not only able to perform better than
YARN for the workloads that are tailored for YARN, but
also has the ability to enable Hadoop to scale to extreme
scales for finer-grained sub-second workloads.

A. YARN Configuration

In the experiments, we use YARN version 2.5.1.
Although newer version of YARN is released very
frequently, we argue that it does not have a perceivable
impact on what we are trying to study and present in this
paper. For example, the centralized design and
implementation are not going to change significantly in the
coming releases in the near future. Here, we configure the
HDFS block size to be 16MB. The usual Hadoop cluster
configuration is from 32MB to 256MB, but we believe this is
a reasonable change as we focus on studying the scheduling
overhead of the frameworks. Increasing the block size will
only increase the task length (or execution time) of the map
tasks and decrease the total number of map tasks. Our
conclusions on the scheduling performance improvement do
not vary with the different HDFS block sizes. To fairly
capture the traces of each task, we use the default map and
reduce logging service. The logging mode is INFO, which is

lightweight comparing with DEBUG or ALL. This is to
minimize the impact of logging on Hadoop performance. To
best characterize the overheads of the centralized scheduling
and management, we use a stand-alone instance to hold the
NameNode and ResourceManager daemons. The isolation of
master and slaves guarantees that the performance of the
Hadoop master is not compromised by co-located
NodeManager or DataNode daemons.

B. Experiment Environment

We run experiments on Amazon Cloud using the
“m3.large” instances up to 256 CPUs (128 instances). Each
instance has 2 CPUs, 6.5ECUs, 7.5GB memory and 16GB
storage of SSD, and uses the Ubuntu 14.04LTS distribution.
For both YARN and MATRIX, on one instance, we control
the number of tasks executed in parallel to be 2 (equals to the
number of CPUs).

C. Definitions of the Metrics

We define two metrics to evaluate the performance:

1) Efficiency: The Efficiency is the percentage of the

ideal running time (𝑇𝑖𝑑𝑒𝑎𝑙) to the actual running time

(𝑇𝑎𝑐𝑡𝑢𝑎𝑙) of a workload, which quantifies the average

utilization of the system. The higher efficiency ((100 ×
𝑇𝑖𝑑𝑒𝑎𝑙 𝑇𝑎𝑐𝑡𝑢𝑎𝑙⁄)%) indicates less scheduling overheads.

Given a workload that has 𝑝 phases and one phase cannot
be started until the previous one has been finished, we can

compute the ideal running time, 𝑇𝑖𝑑𝑎𝑙 = ∑ 𝑇𝑖𝑑𝑒𝑎𝑙(𝜆)
𝑝
𝜆=1 , in

which 𝑇𝑖𝑑𝑒𝑎𝑙(𝜆) is the ideal running time of the λth phase.

Assuming in the λth phase, on average, each core is
executing 𝑘 tasks with an average length of 𝑙 . Therefore,
𝑇𝑖𝑑𝑒𝑎𝑙(𝜆) = 𝑘 × 𝑙.

2) Average Task-Delay Ratio: The average Task-Delay
(td) Ratio, 𝑟𝑡𝑑̅̅ ̅̅ , is computed as the normalized difference

between the average ideal task turnaround (itt) time, 𝑇𝑖𝑡𝑡
̅̅ ̅̅ ,

and the average actual task turnaround (att) time 𝑇𝑎𝑡𝑡
̅̅ ̅̅ ̅, which

is 𝑟𝑡𝑑̅̅ ̅̅ = (𝑇𝑎𝑡𝑡
̅̅ ̅̅ ̅ − 𝑇𝑖𝑡𝑡

̅̅ ̅̅) 𝑇𝑖𝑡𝑡
̅̅ ̅̅⁄ . For each task 𝑛, the turnaround

time (tt), denoted as 𝑇𝑡𝑡(𝑛) is the time interval between the

time when the task is launched and the time when the task is
finished. Both MATRIX and YARN can record the detailed
timestamps of each task, from which, we can know the
turnaround time of each task. Therefore, we can compute
𝑇𝑎𝑡𝑡
̅̅ ̅̅ ̅ after running a workload that include 𝑘 tasks: 𝑇𝑎𝑡𝑡

̅̅ ̅̅ ̅ =
∑ 𝑇𝑡𝑡(𝑛)

𝑘
𝑛=1

𝑘
. Assuming on average, each core in the system is

executing 𝑘 tasks with an average length of 𝑙. Therefore, the
𝑛𝑡ℎ task needs to wait (𝑛 − 1) × 𝑙 time before being
executed, meaning that𝑇𝑡𝑡(𝑛) = (𝑛 − 1) × 𝑙 + 𝑙 = 𝑛𝑙.

 Titt
̅̅ ̅̅ =

∑ (𝑛𝑙)𝑘
𝑛=1

𝑘
=

𝑛+1

2
× 𝑙

This metric measures how fast a framework can response
from each task’s perspective. The smaller rtd̅̅̅̅ means faster
response time and lower scheduling overheads.

We do not use the throughput as a metric, because we
cannot tell how good the performance is for a given
workload directly from the throughput number. These two
metrics are more explicit in expressing the performance.

D. Benchmarking Hadoop Workloads

The first set of experiments run typical Hadoop
workloads, such as WordCount, Terasort, RandomWriter,
and Grep. The input is a 10GB data file extracted from the
Wikipedia pages. We do weak-scaling experiments that
process 256MB data per instance. At 128 instances, the data
size is 32GB including 3.2 copies of the 10GB data file.

1) WordCount
The WordCount is a typical two-phase Hadoop workload.

The map task count the frequency of each individual word in
a subset data file, while the reduce task shuffles and collects
the frequency of all the words. Figure 2 and Figure 3 show
the performance comparisons between MATRIX and YARN.

Figure 2: Efficiency for WordCount

Figure 3: Average Task-Delay Ratio for WordCount

From Figure 2, we see that at all scales, MATRIX
outperforms YARN by 1.26X on average for tasks with
average lengths ranging from 13 to 26 sec. As scale increases
from 2 cores to 256 cores, YARN’s efficiency drops by 13%,
while MATRIX’s drops by only 5% and maintains 93%.
These results indicate that MATRIX is more scalable than
YARN, due to the distributed architecture and technique that
optimizes both load balancing and data locality.

Figure 3 compares the average Task-Delay Ratio
between MATRIX and YARN, and shows the ideal average
task turnaround time for all the scales. MATRIX achieves
performance that is quite close to the ideal case. The added
overheads (quantified by the average Task-Delay Ratio) of
MATRIX are much more trivial (20X less on average) than
that of YARN. This is because each scheduler in MATRIX
maintains task queues, and all the ready tasks are put in task
ready queues as fast as possible. On the contrary, YARN
applies a pull-based model that lets the free containers pull

tasks from the application master, incurring significant Ping-
Pong overheads and poor data-locality.

2) TeraSort
TeraSort is another two-phase Hadoop workload that

performs in-place sort of all the words of a given data file.
Figure 4 and Figure 5 present the comparison results
between MATRIX and YARN.

Figure 4: Efficiency for TeraSort

Figure 5: Average Task-Delay Ratio for TeraSort

Figure 4 illustrates the efficiency comparisons. We see
that YARN can achieve performance that is close to
MATRIX, however, there is still a 10% discrepancy on
average. This is because in TeraSort, the time spent in the
reduce phase dominates the whole process. The final output
data volume is as large as the initial input one, but the
number of reduce tasks is much less than that of the map
tasks (In our configurations, there are 8 reduce tasks at 256
cores, and 1 reduce task at all other scales). Therefore, load
balancing is less important.

However, in terms of the task turnaround time, MATRIX
still achieves much faster responding time with much smaller
overheads (10X less on average), according to Figure 5.

3) RandomWriter
The RandomWriter workload is consist of only map tasks,

and each task writes an amount of random data to the HDFS
with a summation of 10GB data per instance. Figure 6 and
Figure 7 give the performance comparison results.

Figure 6 shows that at all scales, MATRIX achieves
much better performance (19.5% higher efficiency on
average) than YARN. In addition, as the scale increases,
YARN’s efficiency drops dramatically, from 95% at 2 cores
to only 66% at 256 cores. The trend indicates that at larger
scales, YARN efficiency would continue to decrease. On the
contrary, MATRIX can maintain high efficiency at large
scales and the efficiency-decreasing rate is much slower

98% 95% 95% 95% 93%
85% 82%

67% 74% 72%

0

6

12

18

24

30

0%

20%

40%

60%

80%

100%

2 4 16 64 256

A
v
e
ra

g
e
 T

a
s
k
 L

e
n
g
th

 (
s
e
c
)

E
ff
ic

ie
n
c
y

Scale (No. of cores)

MATRIX efficiency YARN efficiency Average task length

0.028 0.032 0.016 0.003 0.012

0.224 0.243

0.490

0.237
0.267

0

30

60

90

120

150

0

0.1

0.2

0.3

0.4

0.5

2 4 16 64 256 A
v
e
ra

g
e
 T

a
s
k
 T

u
rn

a
ro

u
n
d
 T

im
e

(s
e
c
)

A
v
e
ra

g
e
 T

a
s
k
-D

e
la

y
R

a
ti
o

Scale (No. of cores)

MATRIX average Task-Delay Ratio
YARN average Task-Delay Ratio
Ideal average task turnaround time

99% 95% 97% 98%
90%

86% 87% 85%

93%

83%

0

6

12

18

24

30

0%

20%

40%

60%

80%

100%

2 4 16 64 256 A
v
e
ra

g
e
 T

a
s
k
 L

e
n
g
th

 (
s
e
c
)

E
ff
ic

ie
n
c
y

Scale (No. of cores)

MATRIX efficiency YARN efficiency Average task length

0.006
0.017 0.021 0.020 0.017

0.167 0.169

0.243

0.155

0.249

0

30

60

90

120

150

180

0

0.05

0.1

0.15

0.2

0.25

0.3

2 4 16 64 256

A
v
e
ra

g
e
 T

a
s
k
 T

u
rn

a
ro

u
n
d

T
im

e
 (

s
e
c
)

A
v
e
ra

g
e
 T

a
s
k
-D

e
la

y
R

a
ti
o

Scale (No. of cores)

MATRIX average Task-Delay Ratio
YARN average Task-Delay Ratio
Ideal average task turnaround time

comparing with YARN. We believe that as the scales keep
increasing to extreme-scales, the performance gap between
MATRIX and YARN would be getting bigger and bigger.

Figure 6: Efficiency for RandomWriter

Figure 7: Average Task-Delay Ratio for RandomWriter

The reason that MATRIX can significantly beat YARN
for the RandomWriter workload is not only because the
distributed scheduling architecture and technique can
perform better than the centralized ones of YARN, but also
because MATRIX writes all the data locally while YARN
writes all the data to the HDFS that may distribute the data to
the remote data nodes.

In terms of the average Task-Delay Ratio presented in
Figure 7, again, MATRIX can response to per-task much
faster than YARN, due to the pushing mechanism used in the
MATRIX scheduler that eagerly pushes all the ready tasks to
the task ready queues.

4) Grep
The last Hadoop benchmark is the Grep workload that

searches texts to match the given pattern in a data file. In
YARN, the Grep workload is divided into 2 Hadoop jobs,
namely search and sort. Both jobs have a two-phase
MapReduce data pattern. However, MATRIX converts the
entire Grep workload to one application DAG that has a
four-phase data flow pattern. The output of the reduce phase
of the search job is the input of the map phase of the sort job.
The comparison results between MATRIX and YARN with
the Grep workload are shown in Figure 8 and Figure 9.

Figure 8 shows that MATRIX performs much better than
YARN with a performance gain of 53% on average (1.53X
speedup). YARN achieves relatively low efficiency, even at
2-core scale. The reasons are two-folds. First, the Grep
workload has a wide distribution of task lengths. Based on
the targeting text pattern, map tasks may execute
significantly different amounts of times and generate results
ranging from empty to large volumes of data when given

different parts of the data file. This huge heterogeneity of
task length leads to poor load balancing in YARN. The other
reason is that YARN needs to launch 2 Hadoop jobs for the
Grep workload, which doubles the job launching overheads.

Figure 8: Efficiency for Grep

Figure 9: Average Task-Delay Ratio for Grep

However, MATRIX can optimize both load balancing
and data-locality through the work stealing technique. This is
preferable for heterogeneous workloads. Besides, MATRIX
decomposes the workload as one DAG and launches all tasks
once as fast as possible, introducing much less overheads.
Figure 9 validates this justification by showing that
MATRIX responses 20X faster on average than YARN.

E. Ligand Clustering Application in Bioinformatics

The previous comparisons use benchmarking workloads,
and MATRIX has shown better scalability than YARN for
all the workloads. In this section, we show how they perform
on a real data-intensive application in bioinformatics, namely
the Ligand Clustering application [37].

Large dataset clustering is a challenging problem in the
field of bioinformatics, where many researchers resort to
MapReduce for a viable solution. The real-world application
experimented in this study is an octree-based clustering
algorithm for classifying protein-ligand binding geometries,
which has been developed in the University of Delaware.
The application is implemented in Hadoop and is divided
into iterative Hadoop jobs. In the first job, the map tasks read
the input datasets that contain the protein geometry
information. Depending on the size of the problem, the input
dataset size varies from giga bytes to tera bytes and the
workloads are considered as both data-intensive and
compute-intensive. The output of the first job is the input of
the second one; this applies iteratively. The output data size
is about 1% of the input data size in the first job. Thus, the
map tasks of the first job dominate the processing.

99% 99%
95% 94% 92%95% 93%

80%
73%

66%

0

10

20

30

40

50

0%

20%

40%

60%

80%

100%

2 4 16 64 256

A
v
e
ra

g
e
 T

a
s
k
 L

e
n
g
th

(s

e
c
)

E
ff
ic

ie
n
c
y

Scale (No. of cores)

MATRIX efficiency YARN efficiency Average task length

0.005 0.000 0.004
0.028

0.043
0.047

0.079

0.167 0.186

0.212

0

25

50

75

100

125

150

0

0.05

0.1

0.15

0.2

0.25

0.3

2 4 16 64 256

A
v
e
ra

g
e
 T

a
s
k
 T

u
rn

a
ro

u
n
d

T
im

e
 (

s
e
c
)

A
v
e
ra

g
e
 T

a
s
k
-D

e
la

y
R

a
ti
o

Scale (No. of cores)

MATRIX average Task-Delay Ratio
YARN average Task-Delay Ratio
Ideal average task turnaround time

99%
94% 94% 93%

86%

59%

73%

52%

72%

55%

0

10

20

30

40

50

0%

20%

40%

60%

80%

100%

2 4 16 64 256

A
v
e
ra

g
e
 T

a
s
k
 L

e
n
g
th

(s

e
c
)

E
ff
ic

ie
n
c
y

Scale (No. of cores)

MATRIX efficiency YARN efficiency Average task length

0.095 0.080
0.023 0.005 0.029

0.579

0.319

0.622

0.258

0.365

0

15

30

45

60

75

0

0.16

0.32

0.48

0.64

0.8

2 4 16 64 256

A
v
e
ra

g
e
 T

a
s
k
 T

u
rn

a
ro

u
n
d

T
im

e
 (

s
e
c
)

A
v
e
ra

g
e
 T

a
s
k
-D

e
la

y
R

a
ti
o

Scale (No. of cores)

MATRIX average Task-Delay Ratio
YARN average Task-Delay Ratio
Ideal average task turnaround time

Like the benchmarking workloads, in this application, the
input data size is 256MB per instance based on the 59.7MB
real application data. We apply 5 iterative Hadoop jobs,
including 10 phases of map and reduce tasks. We run the
application in both MATRIX and YARN, and the
performance results are given in Figure 10 and Figure 11.

Figure 10: Efficiency for the Bioinformatics application

Figure 10 shows that as the scale increases, the efficiency
of YARN is decreasing significantly. At 256-core scale,
YARN only achieves 30% efficiency, which is one third of
that achieved (91%) through MATRIX. The decreasing trend
is likely to hold towards extreme-scales for YARN. On the
other hand, the efficiency of MATRIX has a much slower
decreasing trend and is becoming stable at 64-core scale.
These results show the potential extreme scalability of
MATRIX, which we will explore through simulations later.

The contributing factors of the large performance gain of
MATRIX include the distributed architectures of the
resource management, task scheduling, and metadata
management; the distributed scheduling technique; as well as
the general DAG decomposition of any application with
arbitrary data flow pattern. All these design choices of
MATRIX are radically different from those of YARN.

Figure 11: Average Task-Delay Ratio for the application

Like the Grep workload, YARN launches the 5 iterative
Hadoop jobs one by one, incurring large amount of
launching and Ping-Pong overheads, whilst MATRIX
launches the whole application DAG once. This difference is
another factor that causes the speed gap between YARN and
MATRIX in responding to per-task shown in Figure 11
(MATRIX achieves 9X faster than YARN on average).

F. Fine-grained Data Processing Workloads

We have shown that MATRIX is more scalable than
YARN in processing both typical benchmarking workloads
and a real application in Bioinformatics. All the workloads
evaluated so far are relatively coarse-grained (e.g. average

task length of tens of seconds), comparing with the Berkeley
Spark MapReduce stack [38] that targets finer-grained
workloads (e.g. average task length of hundreds of
milliseconds). We have identified that YARN is not well
suited for running fine-grained workloads, due to the pull-
based task scheduling mechanism and the HDFS centralized
metadata management. To validate this, we run a fine-
grained workload test of YARN at 64 cores for the Terasort
workload by reducing the block size of HDFS to 256KB,
100X smaller than the previous course-grained experiments.
The average task length should be only 1/100 of that of the
course-grained workloads (286ms according to Figure 4).
However, YARN’s logs show that the average task execution
time decreases only by half with about 14 sec, leading to the
efficiency as low as 2.04% (286/14000).

On the contrary, MATRIX is designed to process the
fine-grained sub-second workloads [28]. In [36], MATRIX
achieved 85%+ efficiency for 64ms workload at 4K-core
scales on an IBM BG/P supercomputer. In addition, in [39],
we have compared MATRIX with the Spark sparrow
scheduler with NOOP sleep 0 tasks and MATRIX was 9X
faster than sparrow in executing the tasks.

To further justify that MATRIX has the potential to
enable MapReduce to scale to extreme-scales, we explore the
scalability of MATRIX through both real system (256-core
scale) and simulations (64K-core scale) for fine-grained
workloads. We choose the Ligand real application, reduce
the task length of each task by 100X, increase the number of
map tasks in the first iteration (there are 5 iterations of jobs
in total) by 100X, and keep the task dependencies the same.
The average task length in this workload ranges from 80ms
to 166ms at different scales (refers to Figure 10 about the
coarse-grained workload ranging from 8sec to 16.6sec).

We run MATRIX with this workload up to 256 cores.
Besides, we conduct simulations of MATRIX for this
workload at 64K-core scale, through the SimMatrix
simulator [41]. SimMatrix is a lightweight discrete event
simulator of task execution fabric, developed in Java.
SimMatrix simulates the distributed task scheduling
architecture, the distributed scheduling technique, and the
KVS metadata management. We feed the fine-grained
workloads in SimMatrix. Beyond 256 cores, we increase the
number of tasks linearly with respect to the system scales by
repeating the workloads at 256 cores. We show the
efficiency results of MATRIX running both the fine-grained
and coarse-grained workloads, as well as SimMatrix running
the fine-grained workloads in Figure 12.

When the granularity increases by 100X, the efficiency
only drops about 1.5% on average up to 256 cores (blue line
vs. the solid red line). This shows great scalability of
MATRIX in processing the fine-grained workloads. From
the simulation’s perspective, we run SimMatrix up to 64K
cores and validate SimMatrix against MATRIX within 256-
core scales. The normalized difference (black line) between
SimMatrix and MATRIX is only 4.4% on average, which
shows that SimMatrix is accurate and the simulation results
are convincible. At the 64K cores, the efficiency maintains
86.8% for the workload of average task length of 150ms.
According to the efficiency trend, we can predict that at the

99% 99%
94% 91% 91%

57%

69%

55%

40%
30%

0

10

20

30

40

50

0%

20%

40%

60%

80%

100%

2 4 16 64 256

A
v
e
ra

g
e
 T

a
s
k
 L

e
n
g
th

(s

e
c
)

E
ff
ic

ie
n
c
y

Scale (No. of cores)

MATRIX efficiency YARN efficiency Average task length

0.056
0.102 0.085 0.090

0.025

0.563

0.424

0.730

0.567

0.372

0

30

60

90

120

150

180

0

0.15

0.3

0.45

0.6

0.75

0.9

2 4 16 64 256

A
v
e
ra

g
e
 T

a
s
k
 T

u
rn

a
ro

u
n
d

T
im

e
 (

s
e
c
)

A
v
e
ra

g
e
 T

a
s
k
-D

e
la

y
R

a
ti
o

Scale (No. of cores)

MATRIX average Task-Delay Ratio
YARN average Task-Delay Ratio
Ideal average task turnaround time

1M-core scale, the efficiency will be 85.4% for this fine-
grained workload. These results show that MATRIX has the
potential to enable Hadoop to scale to extreme scales, even
for the fine-grained sub-second workloads.

Figure 12: MATRIX for sub-second Bioinformatics workloads

V. CONCLUSIONS & FUTURE WORK

Large-scale Internet applications are processing large
amount of data on the commodity cluster processors.
Although the Hadoop framework has been prevalent for
running these applications, there are inherent design issues
that prevent Hadoop from scaling to extreme scales, given
the fact that both of the data volumes and the system scale
are increasing exponentially. This paper proposed to leverage
the distributed design wisdoms of the MATRIX task
execution framework to overcome the scaling limitations of
Hadoop towards extreme scales. MATRIX addressed the
scaling issues of YARN by employing distributed resource
management, distributed data-aware task scheduling, and
distributed metadata management using key-value stores.

We compared MATRIX with YARN using typical
Hadoop workloads and the application in Bioinformatics up
to 256 cores. Table 1 summarizes the average performance
results of both MATRIX and YARN for different workloads
for all scales. We see on average of all the Hadoop
workloads, MATRIX outperforms YARN by 1.27X at all
scales on average. For the application in Bioinformatics
(BioApp), MATRIX outperforms YARN by 2.04X. We also
explored the scalability of MATRIX through both real
system and simulations at extreme scales [42] for fine-
grained sub-second workloads. The simulations indicate 86.8%
efficiency at 64K-core scale for 150ms workloads.

In the future, we will continue to compare SimMatrix
with the YARN simulator, YARNsim [55][56][57], at
extreme scales. We predict that MATRIX has the potential to
enable MapReduce to scale to extreme-scale distributed
systems. We will integrate MATRIX with the FusionFS [35]
distributed file system. FusionFS assumes that each compute
node will have local storage, and all the file servers are
writing the data files locally to eliminate the data movement
overheads introduced by stripping the data files as the HDFS
does. FusionFS supports the POSIX interface and applies
ZHT for distributed file metadata management. FusionFS
will also explore the burst buffer technique [40] as a caching

layer to enable faster operation speed and asynchronous
check pointing. MATRIX will rely on FusionFS for scalable
data management, which could enable the support of general
scientific data formats [59][60][62][63], as opposed to the
specialized HDFS one in Hadoop.

Table 1: Efficiency results summary of MATRIX and YARN

Workloads
Task

Length

MATRIX

Efficiency

YARN

Efficiency

Average Speedup

(MATRIX/YARN)

WordCount 21.2sec 95.2% 76.0% 1.26

TeraSort 20.1sec 95.9% 87.0% 1.10

Random

Writer
36.2sec 95.8% 81.4% 1.20

Grep 11.5sec 93.0% 62.0% 1.53

BioApp 12.3sec 94.9% 50.2% 2.04

Fine-grained

BioApp

128.5

ms
93.5% N/A N/A

Another future work will be integrating MATRIX with
the Hadoop application layer, so that the application codes
need not to be changed [54]. Currently, in MATRIX, the
applications need to be re-programmed as the workload
DAGs, so that the MATRIX client can submit them. In the
future, we will develop interfaces between the Hadoop
applications and MATRIX, and expose the same APIs as
YARN does. To enable MATRIX to support broader
categories of applications, we will investigate to change the
MATRIX application interfaces to cater to the general Pilot-
abstractions of jobs [50], in-situ applications [58], so that
MATRIX can run a general category of data-intensive
applications on all of HPC [66][68], Hadoop and Cloud
infrastructures [64].

ACKNOWLEDGMENT

This work was supported by the U.S. Department of
Energy contract DE-FC02-06ER25750, and in part by the
National Science Foundation (NSF) under awards CNS-
1042537 and NSF-1054974. This work was also possible in
part due to the Amazon AWS Research Grant.

REFERENCES

[1] Yahoo! Labs, avaible online: http://labs.yahoo.com/news/researchers-
explain-the-science-powering-yahoo-weather/, 2014.

[2] L. Barroso, et al. “Web search for a planet: The Google cluster
architecture,” IEEE Micro, vol.23, no.2, pp.22,28, March-April 2003.

[3] Coats, W. Sloan, et al. "Streaming into the Future: Music and Video
Online." Loy. LA Ent. L. Rev. 20 (2000): 285..

[4] Z. Stone, et al. “Autotagging facebook: Social network context
improves photo annotation,” IEEE workshop on CVPRW, 2008.

[5] F. Darema. “Dynamic data driven applications systems: A new
paradigm for application simulations and measurements,”
Computational Science-ICCS 2004. Springer Berlin Heidelberg, 2004.

[6] L. He, et al. “Mapping DAG-based applications to multiclusters with
background workload,” in Proc. Of CCGrind, 2005.

[7] J. Dean, S. Ghemawat. “MapReduce: simplified data processing on
large clusters,” Communications of the ACM 51.1 (2008): 107-113.

[8] A. Bialecki, et al. “Hadoop: A Framework for Running Applications
on Large Clusters Built of Commodity Hardware”,
http://lucene.apache.org/hadoop/, 2005.

[9] K. Shvachko, H. Huang, et al. “The hadoop distributed file system”,
in: 26th IEEE Symposium on MSST, May, 2010.

[10] V. Vavilapalli, et al. “Apache Hadoop YARN: yet another resource
negotiator,” SOCC '13.

0.39%0.80%

9.90%

2.33%
8.44%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

E
ff
ic

ie
n
c
y

Scale (No. of Cores)

MATRIX efficiency (coarse-grained)
MATRIX efficiency (fine-grained)
SimMatrix efficiency (fine-grained)
Normalized difference (abs(SimMatrix-MATRIX)/MATRIX)

[11] B. Hindman, et al. “Mesos: a platform for fine-grained resource
sharing in the data center,” NSDI'11.

[12] T. Gunarathne, et al. “Scalable parallel computing on clouds using
Twister4Azure iterative MapReduce,” Future Gener. Comput. Syst.,
2013.

[13] K. Wang, et al. “Using simulation to explore distributed key-value
stores for extreme-scale system services,” SC '13.

[14] K. Wang, et al. “Exploring the Design Tradeoffs for Extreme-Scale
High-Performance Computing System Software,” IEEE TPDS, 2015.

[15] T. Li, et al. “ZHT: A Light-Weight Reliable Persistent Dynamic
Scalable Zero-Hop Distributed Hash Table,” IPDPS '13.

[16] K. Wang, et al. “Towards Scalable Distributed Workload Manager
with Monitoring-Based Weakly Consistent Resource Stealing,” ACM
HPDC 2015.

[17] K. Wang, et al. “Next Generation Job Management Systems for
Extreme Scale Ensemble Computing,” ACM HPDC 2014.

[18] T. Li, et al. “A Dynamically Scalable Cloud Data Infrastructure for
Sensor Networks,” Invited Paper, ACM ScienceCloud 2015.

[19] A. Raj, et al. “Enhancement of Hadoop Clusters with Virtualization
Using the Capacity Scheduler,” International Conf. on ICSEM, 2012.

[20] Apache Hadoop 1.2.1 Documentation. 2014. [Online]. Available:
http://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html.

[21] Apache Hadoop on Demand (HOD). 2014. [Online]. Available:
http://hadoop.apache.org/common/docs/r0.21.0/hod-scheduler.html.

[22] A. Rasooli and D. Down. “A Hybrid Scheduling Approach for
Scalable Heterogeneous Hadoop Systems,” In Proc. of the SC
Companion (SCC), 2012.

[23] A. Rasooli and D. Down. “An adaptive scheduling algorithm for
dynamic heterogeneous Hadoop systems,” CASCON, 2011.

[24] M. Zaharia, et al. “Delay scheduling: a simple technique for
achieving locality and fairness in cluster scheduling,” EuroSys, 2010.

[25] K. Ousterhout, et al. “Sparrow: distributed, low latency scheduling”,
in Proc. of SOSP, 2013.

[26] G. Mackey, et al. “Improving metadata management for small files in
HDFS,” Cluster Computing and Workshops, CLUSTER, 2009.

[27] X. Zhao, et al. “Metadata-Aware small files storage architecture on
hadoop,” In Proc. of the conf. on WISM, 2012.

[28] K. Wang, et al. “Modeling Many-Task Computing Workloads on a
Petaflop IBM BlueGene/P Supercomputer,” IEEE CloudFlow 2013.

[29] E. M. Estolano, et al. “Haceph: Scalable Meta- data Management for
Hadoop using Ceph,” Post Session at NSDI, 2010.

[30] S. A. Weil, et al. “Ceph: a scalable, high-performance distributed file
system,” In Proc. of OSDI, 2006.

[31] K. Wang, et al. “Optimizing Load Balancing and Data-Locality with
Data-aware Scheduling,” IEEE International Conf. on Big Data, 2014.

[32] S. A. Weil, et al. “Dynamic Metadata Management for Petabyte-Scale
File Systems,” SC '04.

[33] I. Stoica, et al. “Chord: A scalable peer-to-peer lookup service for
Internet applications,” in Proc. ACM SIGCOMM 2001.

[34] K. Wang, et al. “Paving the Road to Exascale with Many-Task
Computing,” Doctoral Showcase, SC’12.

[35] D. Zhao, et al. “FusionFS: Towards Supporting Data-Intensive
Scientific Applications on Extreme-Scale High-Performance
Computing Systems,” IEEE International Conf. on Big Data, 2014.

[36] K. Wang, et al. “MATRIX: Many-Task Computing Execution Fabric
for Extreme Scales,” Tech report, CS Dept., IIT, 2013.

[37] B. Zhang, et al. “Enhancement of Accuracy and Efficiency for RNA
Secondary Structure Prediction by Sequence Segmentation and
MapReduce,” BMC Structural Biology Journal, 13(Suppl 1):S3, 2013.

[38] M. Zaharia, et al. “Spark: cluster computing with working sets,” in
Proc. of the 2nd USENIX conf. on HotCloud, 2010.

[39] I. Sadooghi, et al. “Achieving Efficient Distributed Scheduling with
Message Queues in the Cloud for Many-Task Computing and High-
Performance Computing,” CCGrid, 2014.

[40] N. Liu, et al. “On the role of burst buffers in leadership-class storage
systems,” in Proc. of MSST, 2012.

[41] K. Wang, et al. “SimMatrix: Simulator for MAny-Task computing
execution fabRIc at eXascales,” ACM HPC 2013.

[42] D. Zhao, et al. “Exploring Reliability of Exascale Systems through
Simulations,” ACM HPC 2013.

[43] M. Schwarzkopf, et al. “Omega: flexible, scalable schedulers for
large compute clusters,” In Proc. of EuroSys, 2013.

[44] K. Wang, I. Raicu. “Scheduling Data-intensive Many-task Computing
Applications in the Cloud," NSFCloud Workshop, 2014.

[45] I. Raicu, I. Foster. “Many-Task Computing: Bridging the Gap
between High Throughput Computing and High Performance
Computing,” PhD Dissertation, CS Depart., UChicago, 2009.

[46] M. Wilde, et al. “Swift: A language for distributed parallel scripting,”
Parallel Comput. 37, 9 (September 2011), 633-652.

[47] R. Knöll and M. Mezini. “Pegasus: first steps toward a naturalistic
programming language,” ACM SIGPLAN OOPSLA 2006.

[48] K. Wang, I. Raicu. "Towards Next Generation Resource Management
at Extreme-Scales", PhD Proposal, CS Dept., IIT, 2014.

[49] L. V. Kale and S. Krishnan. “CHARM++: a portable concurrent
object oriented system based on C++,” SIGPLAN Not. 28, 10, 1993.

[50] P. Mantha, et al. “P*: A model of pilot-abstractions,” IEEE Int. Conf.
on E-Science, 2012.

[51] C. Dumitrescu, et al. “The Design, Usage, and Performance of
GRUBER: A Grid uSLA-based Brokering Infrastructure,”
International Journal of Grid Computing, 2007.

[52] T. Li, et al. “A Convergence of Key-Value Storage Systems from
Clouds to Supercomputers,” Journal of CCPE, 2015.

[53] K. Wang, et al. “Load-balanced and locality-aware scheduling for
data-intensive workloads at extreme-scales,” Journal of CCPE, 2015.

[54] K. Wang. “Scalable Resource Management System Software for
Extreme-Scale Distributed Systems,” PhD Dissertation, CS Depart.,
IIT, 2015.

[55] N. Liu, et al. “YARNsim: Hadoop YARN Simulation System,” in
Proc. of the 15th IEEE/ACM CCGrid, 2015.

[56] N. Liu, et al. “FatTreeSim: Modeling a Large-scale Fat-Tree Network
for HPC Systems and Data Centers Using Parallel and Discrete Event
Simulation,” in Proc. of the 29th ACM SIGSIM PADS, 2015.

[57] N. Liu, et al. “Model and simulation of exascale communication
networks,” Journal of Simulation, 2012.

[58] Y. Wang, et al. “Smart: A mapreduce-like framework for in-situ
scientific analytics,” Tech. rep., OSU-CISRC-4/15-TR05, OSU, 2015.

[59] Y. Wang, et al. “SciMATE: A Novel MapReduce-Like Framework
for Multiple Scientific Data Formats,” in Proc. of CCGrid, 2012.

[60] Y. Wang, et al. “Supporting a Light-Weight Data Management Layer
Over HDF5,” in Proc. of the 13th IEEE/ACM CCGrid, 2013.

[61] S. Zhang, et al. “After We Knew It: Empirical Study and Modeling of
Cost-effectiveness of Exploiting Prevalent Known Vulnerabilities
Across IaaS Cloud,” In Proc. of the 9th ACM ASIACCS, 2014.

[62] Y. Wang, et al. “A Novel Approach for Approximate Aggregations
Over Arrays,” in Proc. of the SSDBM, 2015.

[63] Y. Wang, et al. “SAGA: Array Storage as a DB with Support for
Structural Aggregations,” in Proc. Of the SSDBM, 2014.

[64] Z. Lv, et al. “Game on, science - how video game technology may
help biologists tackle visualization challenges,” PLoS One 8 e57990.

[65] X. Yang, et al. “Integrating dynamic pricing of electricity into energy
aware scheduling for HPC systems,” SC '13.

[66] X. Yang, et al. “Balancing Job Performance with System
Performance via Locality-Aware Scheduling on Torus-Connected
Systems,” in Proc. of IEEE Cluster'14 , 2014.

[67] Z. Zhou, et al. “Reducing Energy Costs for IBM Blue Gene/P via
Power-Aware Job Scheduling", Workshop on JSSPP, 2013.

[68] Z. Zhou, et al. “Improving Batch Scheduling on Blue Gene/Q by
Relaxing 5D Torus Network Allocation Constraints,” IPDPS, 2015.

